Ab initio calculations of iron-bearing carbonates

Dolomite is one of the major mineral forms in which carbon is subducted into the Earth’s mantle. End-member CaMg(CO3)2 dolomite typically breaks down upon compression into two carbonates at 5–6 GPa in the temperature range of 800–1200 K (Shirasaka et al. 2002). However, high-pressure X-ray diffraction experiments have shown that dense high-pressure polymorphs of dolomite may be favored over single-cation carbonates (Santillán et al. 2003; Mao et al. 2011; Merlini et al. 2012). We compare calculated dolomite structures to experimentally observed phases. Using density functional theory interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group C2/c was found to have lower energy at pressures above 15 GPa than all previously reported dolomite structures. It is possible that this phase is not observed experimentally due to a large activation energy of transition from dolomite I, resulting in the observed second-order phase transition to a metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, several structurally unique metastable polymorphs exist. We calculate the equation of state of a set of lowest-energy dolomite polymorphs up to 80 GPa. Our results demonstrate a need for calculations and experiments on Fe-Mn bearing high-pressure carbonate phases to extend our understanding of Earth’s deep carbon cycle and test whether high-pressure polymorphs of double-cation carbonates represent the main reservoir for carbon storage within downwelling regions of Earth’s mantle. (Read more.)

It has been proposed that iron has a significant effect on the relative stability of carbonate phases at high pressures, possibly even stabilizing double-cation carbonates (e.g., dolomite) with respect to single-cation carbonates (e.g., magnesite, aragonite and siderite). X-ray diffraction experiments have shown that dolomite transforms at ~35 GPa to a high-pressure polymorph that is stable to decomposition; however, there has been disagreement on the structure of the high-pressure phase. Ab initio calculations interfaced with an evolutionary structure prediction algorithm demonstrated that a C2/c polymorph of pure CaMg(CO3)2 dolomite is more stable than previously reported structures. In this study, we calculate the relative enthalpies up to 80 GPa for a set of carbonate phases including Fe-bearing solutions and endmembers, using the generalized gradient approximation and a Hubbard U parameter calculated through linear response theory to accurately characterize the electronic structure of Fe. When calculated with a constant U of 4 eV, the spin transition pressure of (Mg,Fe)CO3 agrees well with experiments, whereas an internally consistent U overestimates the spin transition pressure by ~50 GPa. However, whether we use constant or internally consistent U values, a higher iron concentration increases the stability field of dolomite C2/c with respect to single-cation carbonate assemblages, but iron-free dolomite is not stable with respect to single-cation carbonates at any pressure. Thus, high-pressure polymorphs of Fe-bearing dolomite could in fact represent an important reservoir for carbon storage within oxidized sections of Earth’s mantle. (Read more.)

Monoclinic dolomite with the C2/c space group